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BEHAVIOR OF SLOW ELECTRONS IN POLAR CRYSTALS

by

E.P.Gross

Laboratory for Insulation Research
Massachusetts Institute of Technology
Cambridge, Massachusetts

Abstract: The effective mass of slow electrons in polar crystals is investi-
gated using the continuum model of Pekar and Fr8hlich, Pelzer and
Zienau. The Hamiltonian is studied in a Fock representation so that
effects of several quanta can be assessed. The calculations show that
the effective mass is larger than that predicted by the one quantum
solution, but that the effective mass is still small for weakly polar
crystals. For excess electrons in strongly polar crystals many
quantum contributions must be included and the present method is
inappropriate. It is uncertain whether the effective mass is small
in this case. Holes in polar crystals appear to satisfy the conditions
for the validity of the theory of Landau and Fekar which predicts a

high effective mass.

1. Introduction

The behavior of excess slow electrons in polar crystals has been a
subject of controversy and confusion from the theoretical point of view for
some time. Landaul) and independently von Hippelz) have proposed the idea
that an electron can be self-trapped because a slow electron displaces the

ions about it which, in turn, create a field that prevents the electron {rom

escaping. This possibility has been discussed by Mott and Gurneys) and led

1) L.Landau, Phys. Zt. Sowjet 3, 664 (1933).
2) A.vonHippel, Z. Physik 101, 680 (1936); J. Chem. Phys. 8, 605 (1940).

3) N.F.Mott and R.W.Gurney, "Electronic Processes in lonic Crystals,"
Oxford Press, lst ed. p.86.




to the expectation that a slow electron introduced into the conduction band
should be trapped after some time and should occupy a discrete level. One
should observe optical absorption lines corresponding to the raising of such
a trapped electron into excited discrete levels or into a continuum. In fact,
the trapped electrons were identified with the F centers studied by Pohl and
collaborators until indirect arguments removed this possibility (p.113 of
Ref.3). The optical absorption lines should be found experimentally for all
polar crystals provided enough self-trapped electrons can be obtained, i.e,,
if enough excess electrons can be injected into the crystal, and provided
other trapping processes do not have overwhelmingly greater cross sections.
Experimentally, these lines do not seem to have been found.s' 4)

In addition to the optical behavior it was expected that slow electrons
(or slow holes) would show very low mobilities at low temperatures. It
was thoughg that it would be necessary for the ions to assume new configura-
tions in order that the electron be able to move and that at low temperatures
this would be improbable. This would imply strongly temperatu;e-dependcnt
mobilities. From the experimental point of view the very great effect of
trapping by defects makes it difficult to obtain information about self-trapped
electrons by mobility measurements.

The preceding two examples indicate that self-trapping would have seri-
ous consequences for the behavior of slow electrons in polar crystals. In ad-
dition to the cases mentioned we might expect an influence on prebreakdown
currents, breakdown strengths, cross sections for capture by defects, tem-
perature shift of bands, motion of holes, etc.

The present work was undertaken because of a serious challenge to the

ideas outlined above. Frohlich, Pelzer, and Zicnaus) presented a gquantum-

4) W.H.Duerig, Phys. Rev. 86, 565 (1952).

5) H.Frdhlich, H. Pelzer, S.Zienau, Phil. Mag. 41, 221 (1950). This
work will subsequently be referred to as F.P.Z,
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mechanical treatment o{ the interaction of an electron and the polar optical
modes of vibration using a model which is a good representation of the actual
situation in polar crystals. They concluded that se.f-trapping does not exist,
and that electrons can move freely throughout polar crystals with an effective
mass close to that of a free, excess, conduction electron. The discrete opti-
cal levels do not exist according to this treatment and, since the lattice po-
larization is only weakly coupled to the electron, the continuous absorption
by free ~lectrons shouli be computable by perturbation-type methods.

Somewhat earlier, work by Landau and Pekar6) and Pckar7) also showed
that electrons can move through polar crystals. However, their calculations
led to high effective masses which could be of the order of hundreds of elec-
tron masses for the alkali halides, in flat contradiction to the F.P.Z. con-
tention. This disagreement is particularly interesting since both sets of in-
vestigators start from the same Hamiltonian but use different methods of solu-
tion. In the Landau and Pekar work discrete optical transitions cannot occur,
but the strong coupling with the lattice should lead to important modifications
of the continuous absorption of light by the electron.

In order to clarify the reasons for the discrepancy mentioned and to
find correct values for the effective mass, we have used a method which con-
tains the F.P. Z. treatment as the first stage but remains valid for stronger
interaction. Accounts of this method, as well as preliminary estimates, were

8)

presented at the Tufts meeting of the American Physical Society ’ and in
Progress Report XI of the Laboratory for Insulation Research.g) The method

takes advantage of the fact that the lattice quanta form a system of Bosons

6) L.D.Landau and S.Pekar, Zh. Exp. Theor. Phys. 18, 419 (1948).
7) S.Pekar, Zh. Exp. Theor. Phys. 19, 796 (1949).

8) E.P.Gross, Bull. Amer. Phys. Soc., Tufts Meeting, May 24, 1952;
Phys. Rev. 88, 153 (1952).

9) Progress Report XI, Laboratory for Insulation Research, May, 1952.
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with symmetric wave functions; one works in a series of configuration spaces
in a way first introduced by Focklo) and used by Tomonnga“) in his intermedi-
ate coupling meson theory. The method of approximation used has been de-
veloped by Schweberl 2) in a thesis on the configuration space treatment of
relativistic field theories. It is based on a systematic development according
to the number of quanta present in the wave function.

For further discussion it is convenient to introduce the dimensionless

m W2
() 5

quantity

which measures the strength of interaction between the electron and the optical
polar modes. Here n is the optical index of refraction, ¢ is the static di-
electric constant, m. is the mass of the electron in the conduction zone and w
is the angular frequency of long wavelength longitudinal optical modes. Values
of a are somewhat uncertain, chiefly because one does not have data on m_.
However, for typical polar crystals values of a are: TiBr, 2.5 to 4.5; AgCl,
3.0 to 5.5; KBr, 5.0 to 8.0.

The first figure refers to m_ = 0.7 electron masses, the second to
m =~ 2.0. We will show in this report that the treatment of F.P.Z. gives

C

correct results for the energy and effective mass when a < 0.5. For values

of a up to 2 it is adequate to include two quantum terms in the wave function while

for a >3 inclusion of at least three quantum terms is needed and a treatment
according to the number of quanta present may be inappropriate. Most of
the calculations are carried for a one-dimensional case which is closely re-
lated to the real case. For a < 2 a linear dependence of the lowest energy

state and the effective mass on a appears to fit the numerical results approxi-

10) V. Fock, Z.Physik 75, 622(1932).
11) S. Tomonaga, Prog. Theor. Phys. 2, 6 (1947).

.....
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mately, while for large a it appears that, if higher quantum terms were in-

cluded in the wave function, both energy and effective mass would vary more
rapidly with a. This is relevant to the discussion of other treatments which
will now be undertaken.

Several important new attacks on the electron-lattice problem have ap-
peared in recent months. We shall try to summarize the situation as it ap-
pears at the present time. Lee and Pinesl 3) have set up the problem, in
Fock space, as we have done, but have made use of a variational method, in
the spirit of the Tomonaga intermediate coupling theory.”' 14) The trial
wave functions are products of functions for each wave vector so that correla-
tions between successive quantum emissions are neglected. They find for the
effective mass m® = mc(l + a/b) and for the energy depression of the lowest
state E = —ahw. The mean number of quanta present is found to be a/2. These
results agree with our treatment for a <3, where we are able to carry out the
calculations, so that good results are obtained for energy and effective mass
in spite of the poor wave functions. In addition, the mathematical simplifica-
tion is considerable, making the method very useful. lf one inserts typical
values for a one sees that for almost all cases m* < ch. These effective
masses are larger than those of F.P.Z., but are still small and would bear
out their contention at least as far as the effective mass problem is concerned.
Another type of t'rcatmem, valid for weak interactions has been presented by
Tyablikov.ls' 16) He finds m®* = mc/(l —a/b) and E = —ahw, agreeing with the

intermediate coupling result to the first power of a. These results, however,

13) T.D.Lee and D.Pines, Private communication, to be published.
14) C{.P.T.Matthews, and .i.Salam, Phys. Rev. 86, 715 (1952).
15) S.V.Tyablikov, Z. Exp. Theor. Physics 21, 16 (1951).

16) S. V. Tyablikov, Z. Exp. Theor. Physics 22, 513 (1952).
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must break down for larger a. Pekar.n using the variational method, finds

a trial function yielding E = —0.1 nz

hw. This will i:e discussed further in
Section 2 but for the present we note that for large a this energy is lower
than that given by the intermediate and weak coupling approaches. The de-
tailed numerical calculations of this report indicate that the linear law begins
to break down for a > 3.

7) and Tyablikov,lb’ 18) have developed a new, adiabatic

Bogoliubovl
method for treating the electron-lattice interaction which is valid for a >> 1.
The results are E = -0.1 azh..) and m* = 27(n/6)4mc. in‘close. agreement with
Landau and Pekarb) ani providing a quantummechanical justification of the
semiclassical work of these authors. If one compares the energy depressions
of the intermediate coupling with those of the adiabatic methol one sees that
only for couplings stronger than a = 10 does the adiabatic method give lower
energies. At this value the two theories predict nff >~ 2.7mc and nft = ZIOmC.
respectively.t For these strong interactions the assumption of uncorrelated
quantum emissions breaks down and intermediate coupling theory leads to
wrong values for the effective mass. Since the effective masses do not
match at a = 10, it is difficult to give precise values for a somewhat less than
10. The numerical calculations indicate that both intermediate coupling and
a treatment based on a small number of quanta with correct wave functions
begins to break down for a > 3, so that at a = 6 the result is intermediate be-
tween m® = 27mc predicted by adiabatic theory and nf* = ch predicted by

other treatments. Thus for strongly polar crystals the situation is still

somewhat uncertain. For the lower values of a characteristic of the silver

17) N.N. Bogoliubov, Ukr. Mat. Zhurnal 2, 3 (1950).
18) S. V. Tyablikov, Zh. Exp. Theor. Phys. 21, 377 (1951).

t The figure m® = 432 electron masses for NaCl given in reference 6 ap-
pears to be based on a use of m, between 2 and 3.
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and thallous halides all the theories predict m*= ch in spite of the fact
that the adiabatic approximation is no longer valid. For positive holes in
the ''valence'" band the high masses m, would lead to large values of a and
thus to extremely large effective masses.

One is interested in asking whether any of the theoretical results in
question can be checked experimentally. For the alkali halides, where the
coupling is greatest and the effective mass highest, it seems very difficult
to determine the effects of lattice polarization either by optical measurements
on free carriers or by mobility measurements since the large number of traps
and defects prevent the attainment of an appreciable concentration of electrons
in the conduction zones. The experimental situation appears to be more hope-
ful in less polar crystals such as the silver halides where mobility measure-
ments by Haynes and Shockleylg) and Smith et 81_20) have shown that elec-
trons can be moved across an entire single crystal without being trapped.
Measurements of the absolute value of the mobility and its temperature de-
pendence would be particularly important.t A high effective mass should be
measurable at a low temperature. The optical modes are frozen out and the
chief determinants of the Hall mobility will be a mean time of collision de-
termined by scattering by acoustic modes, impurity and defect scattering,
and the effective mass determined primarily by interaction with the polar modes.
However, if present theory is correct, m* = ?.mc which is too small an effect

to overcome the crudity of the present state of theory as regards a calcula-

tion of the mean collision time.

19) J.R.Haynes and W.Shockley, Phys. Rev. 82, 935 (1951).

20) L.P.Smith, "Semi-Conducting Materials,' ed. H.Henisch, London,
Butterworth, Ltd., 1951, p.114.

t Hofstadterzn §ives values at 779K for AgCl, 1570 cmzﬁolt sec.;
AgBr, 296 cm¢/volt sec.; TiBr, 880 cm /volt sec.

21) R.Hofstadter, Nucleonics 4, 9 (1949).
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19)

The experiments of Haynes and Shockley on AgCl and Engelhard on

CuZOZZ) refer to higher temperatures where scattering by the optical modes
dominates. These experiments have been analyzed dsing the Fr’o’hlich-Mottz3)
theory which is a perturbation treatment. This means that the treatment does
not even correspond in accuracy to the F.P.Z. calculation of the effective

mass; thus a better method is needed. It is possible to use the procedure of

this report to treat this case, but it will not be done here.

2. Earlier Treatments

Landau's note is concerned with the behavior of an electron in a potenti-
al U. If mUaZ/ hz 2 1, where a is the approximate extent, there may be bound
states. Landau conjectures that there are two possible types of states of the
electron-lattice system. In onc the electron moves in a relatively undis-
turbed lattice, in the second one has a localized electron surrounded by a
strong lattice polarization. If the second is energetically preferred, the
claim is that the electron must overcome an activation energy before it can be
trapped into the localized state so that at very low temperatures excess elec-
trons introduced i1n the crystal cannot be trapped. These considerations are
not restricted to polar crystals but are subject to the criticism that the nature
and functional form of the potential U is not discussed, the lattice polariza-
tion is not treated as a dynamical system, and the statement concerning the
activation energy is not proved.

Von Hippelz) focusses attention on polar crystals and discusses the
dynamics of the capture process. With the Einstein assumption of a con-
stant frequency for all the modes of the optical branch, one can treat the

separate unit cells as independent and use the Bohr theory of stopping power,

22) E.Engelhard, Ann. Physik 17, 501 (1933).
23) H.Frdhlich and N.F.Mott, Proc. Roy. Soc. Al71, 496 }1939).
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as has been done by Seeger and Teller24) in their theory of dielectric break-
down. A slow electron of kinetic energy 1/10 ev has a velocity 2x 107 cm/sec.
and a Debroglie wavelength \ = h/mv = 4x 10-7 cm and produces a coulomb
field outside this region. It is necessary to introduce the critical distance
v/, which for the case in question is 2x 107/6x lOlZ‘-‘z l/3x 10-5 cm. lons
more distant than this respond adiabatically to the electron motion and form
a potential well for it. lons lying between h/mv and v/w are shock excited
and receive energy from the electron. Thus the particle will slow down,
decreasing the distance v/o and increasing h/mv. This deepens the potential
well and results in an effective mass because of the changing polarization
carried with the electron. However, according to von Hippel, the potential
well causes the kinetic energy of the electron to increase, so that :'2 increases,
shortening the wavelength and allowing a deeper well to form. The stationary
state is pictured as a localized electron with a shrunken Debroglie length.
This picture contains substantial elements of truth, but is not quantitative
and neglects the zero point motions of the ions and the possibility of trans-
lational motion of the "shrunken' electron. F.P.Z., in their critique of

the self-trapping concept, assume that the shrinking process ceases when
h/mv = v/y =P. They then estimate the energy of interaction as —l/Z

(e = 1/¢) Eopx -1 (12 = 1/¢) (2mop) /2~ —ahw. In addition, the
energy of interaction, according to this argument decreases only slowly

with velocity, so that the effective mass is small. F.P.Z.'s argument can
be criticized as being independent of the strength of interaction and in fact
ceases to be valid for very strong interactions, i.e., the '"shrinking' effect
must be taken into account. The limitations of this argument have their
counterpart in the mathematical technique used to treat the Hamiltonian for

the system, i.e., F.P.Z. restrict themselves to a wave function which con-

24) R.J.Seeger and E.Teller, Phys. Rev. 54, 515 (1938); 56, 352 (1939).
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tains only zero or one quantum terms.
Mott and Gurney” assert that self trapping is possible in all polar crys-
tals and that a series of discrete levels exist because the potential falls off

as 1/r. This again neglects the zero point motions and quantum f{luctuations
of the lattice vibrations.

The preceding discussions are only qualitative. To give an adequate
discussion of the problem one must treat the electron and the lattice particles
as dynamical systems and write a Hamiltonian describing the particle and lat-
tice motions and their interactions. This has been done for polar crystals by
Fr'dhlichs' 25) in connection with the theory of dielectric breakdown and dis-

cussed and improved by Frohlich and Scitzu’) and Callcn27). The total Hamil -

tonian may be written as

” = Hparticlc b #interaction ¥ Hﬁeld. (1)

The particle portion is taken as pZ/ch corresponding to a particle of ef-
fective mass m_. The field portion is a sum over the kinetic energies of the
ions and the mutual potential energies corresponding to a given set of dis-
placements, the force constants depending on the details of the interactions.
For small vibrations the system is redescribed in terms of normal modes in
which the frequencies and relative amplitudes of the ions depend in a compli-
cated way on the interactions. The interaction energy of electron and lattice
oscillations also depends in general on the detailed distortions occurring during
the ionic motions. It is possible, however, to present explicit expressions if

one restricts oneself to the modes with wavelength large compared to the lat-

25) H. Frohlich, Proc. Roy. Soc. A160, 230 (1937).
26) H. Frohlich and F.Seitz, Phys. Rev. 79, 526 (1950).
27) H.Callen, Phys. Rev. 76, 1394 (1949).
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tice period. This will be a fair approximation for the case of slow electrons
in a polar crystal.

For a diatomic crystal there are three optical branches and three acous-
tical branches. If we let H&oi be the normal co-ordinate of the j'th branch and
Kk the wavevector, we have for the energy connected with the lattice vibrations

g % 5 (bZ + bZ
dea T 5 20Tt (2)
For long wavelengths two of the three optical or acoustical branches repre-
sent transverse modes and one a longitudinal mode. The bk_j are connected

with the displacements of the ions by the equations

6
i,n=-=3% U™
WA g Y
(3)
U (¥) = >°: T U, (7)
= =1 -kj
where
1/2
- - 2 in * -
a7 = (m;w) i€ ois {eos) K 7)
(4)

O (¢ /2 in) ,* -
TP = (mn) o€ o K9 )

g*lsj and €-kj are vectors pointing in the direction of polarization. They determine
o ) . 2 2
the relative amplitudes of the ions and sansfyf +kj *e'ﬁj =1, M‘> and M_ are
the masses of the positive and negative ions and N is the number of unit cells
in the quantization box. The above decomposition i1s into standing waves and
; sin| /& < : : -
the notation {cos} (k + r) means that the sin goes with —k when the cos goes
with k.
In a polar crystal the perturbing forces acting on an electron are of two

types. There is first the distortion of the electron clouds of the nearby ions.
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TFhis interaction is not important for estimating the effective n.ass of slow

electrons since the response of the electron cloud is rapid and does not de-
pend appreciably on the electron speed. Second, the moving ions, together
with the electron-cloud distortion, produce a long range dipole component.

This has been estimatcdzs' 27) for long wavelength as follows: The polarization

produced by a normal mode K is the dipole moment per unit volume

]
g > e ned - o >
P (r) = u... -U_ (r ' 5
kit ) 23 ( *kj(r) 'BJ( ) (5)
where e® differs from the electronic charge because of the dipole contributions
of the electronic clouds. For long wavelengths the polarization varies slowly

from one unit cell to the next. The potential produced is determined from

Poisson's equation

Vieg =4y (6)

From this equation one concludes that the transverse modes produce no
perturbing potential. In addition, one can show that the amplitudes € +k
and f_k for acoustic waves of long length are such that Pk is very small.

For short acoustic waves the dipole component is appreciable. One is thus

left with the longitudinal optical modes of long wavelength as the principal source

of the perturbing potential for slow electrons. For longitudinal waves of in-

finite length we have

£, £
—E— - %/z : (M* +M_) VR

M+l/2 M

where p is the reducea mass of the ions. The total perturbing potential is

then taken to be

1/2

. - L 3
I PRGN almien . o
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and the total Hamiltonian for the particle and lattice vibrations is
)y-zf—-z+ (?)+l§: t.>z+2bz (8)
- m_ edlr) + 3 k" “% "k '

The preceding derivation depends very essentially on the assumption that the
wavelengths of importance in the problem are of long wavelength so thai sums
over the shortwave portions give small contributions. Additional assumptions
are made in connecting the constants e# and uk = w with experiment. It has
been pointed out by Frohlich and Mottzs) and Lyddane, Sachs and Tellerzs)
that w for the longitudinal optical modes of infinite wavelength is higher than
that for the corresponding transverse modes (reststrahlen) because of the ad-
ditional restoring force due to the macroscopic field created by the motion of

the ions in a longitudinal mode. Under the assumption that the field acting on

the ions is ﬁ, rather than an internal field more appropriate to the face-

centered cubic lattice, it is possible to derive the equation uz = uf—(z. where
n
wy is the reststrahl frequency. The effective charge e®* can also be connectedn)

with experimentally observable constants by

2 4

‘-'f =(Zwe; )( n 2) .

pa €—n

The above Hamiltonian is written in terms of standing wave co-ordinates.
The bls and t;k can be shown to be canonical co~ordinates and momenta and it
is possible to perform a canonical transformation irom these to a set of
running wave co-ordinates. With
b ( bs . -k ) ] Y, = ( M‘-*?' )
kK~ k —z P

> \v’i'~ ) p—
> & (9)

b b . 3
x-5=(__§__ _L)J Y_kz (-hzﬂ-bkﬂ- %u-bh) J

UQ

o VP
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14=
where
1 _ 11 1
ik m e B o)
The Hamiltonian becomes
M = Z+3-'5 > ¢ (X, sink.q+ cosk- q)
m_ 'y i k Mo
2
Y
+% %(Mﬂle?;i» mk;) ; (11)

This is the starting point of most discussions of slow electron behavioz in
polar crystals. The basic restriction to long wavelengths becomes in-
creasingly poor for increasing interaction strength as the polarization sur-
rounding the electron shrinks to atomic dimensions. However, the Hamil-
tonian appears adequate to settle some of the basic conceptual conflicts in
the self-trapping problem.

The expression Eq.(11) can be treated by classical mechanics. One

writes Hamilton's equations of motion

&8
n
|
|
10 R
n
|
>
oS
[, ]
1x>M
x1xé
.
0
ﬁw‘
0

L ()

-4we 1

:._TYB ——-R-smk 3+ M‘.a"'xk

fa)_(_h_ oM 4welco‘§ q*% .
-TY_ r Mo J

It ia difficult to solve these nonlinear equations for a general set of initial
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conditions. The equations have 2(2N + 3) independent integrals of motion and
a particular solution is identified by specifying the values of the integrals.

It is possible, however, to discuss a particular type of solution in which
there 1s a definite relation between the energy integral and the momentum
integrals. This solution represents an electron moving with constant ve-
locity and the cscillators undergoing purely forced motion. By studying the
relation between the energy and total momentum, one can assign an 'effective
mass' to the electron arising from its interaction with the vibrations. This
type of solution should be the classical analogue of the quantum solution for

the lowest states where no free quanta are present. We take

> > -
p-po—constant =
P
- (o] -
A=m-tr 4,
c
5 (13)
4nc 1 1 . ® (Yo -
X, =m_ — ._—sxnk~(—t+q
k cNkmk.; m o) >
o
-w
m
c
Y o (P
_k . dme 1 cosk'(—°t+¢’1)
Mo WV k i.‘ m °
o
— —w /
c

The expression for xk indicates that the field amplitudes must be assigned
large values for those waves for which the particle speed is close to the wave
speed. If we restrict ourselves to very slow particle speeds, k -Bo/mc < w
even for the shortest waves (kmax) corresponding to lattice dimensions, i.e.,
there are no trapped electrons. For these very slow particles we should ex-
pect the effective mass to be unity since all of the ions are excited adiabatically
and there is no change in polarization with particle speed. This may be veri-

——

fied by writing ihe inoimentum
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4ne
2,2 2
* [Mu“Xr Y - zc—- )
> - k kM VRMU
“P*Zs{—z—b*rﬁ}:;o*z; — T 2
k k (k-po_ )
™ W
and the energy
twer 1 dwe é
or ) w1 o< 2 o )
E=y ¢ %{‘ + > Mo —
.po '-( (k.pO )
™ - W m - W

By eliminating 50 we can find a relation between E and Xz which for slow

particles is characteristic of a free electron.

bl
Let us consider the case of particles at rest. Then ;0 =X\ =0 and

e T g————

(14)

(15)

1 e
E=- 3 E( dm ) Elz . The energy thus depends on the details of the short-

Nk

wave cutoff. Following F.P.Z. we can compute the potential produced at a

point T by an electron at ao' Inserting the values for )(k and Yk from Eqs.

(13) we find

Y
. 4w 1 , > . k > -
¢ (r) = (X, sink. r + cosk-r)
VT/A-'E k Xk Mo
I *» >
_—lbnzc 5 cos(ker—q )
VMo K K

(16)

This 1s the potential of a point charge in a dielectric and verifies the choice

1 171 1
wF )

Frohlich and Pclzerzs) have presented another treaiment of the behavior

of a classical point charge interacting with the polar modes. The electron is
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assumed to move with uniform velocity and the response of the oscillators
is calculated. The electron velocity is high so that energy loss associated
with trapping must occur. Frdhlich and Pclzer?‘g) treat this phenomenon
schematically, neglecting electron recoil. In addition, they compute the
energy carried along with the electron and find 2n effective mass increasing
rapidly with decreasing electron speed.

Deviations from classical behavior are expected in two different ways.
First, one must consider the wave character of the electron. This leads one
to expect that at least for weak interactions the cutoff will be given by the
Debroglie wavelength of the electron rather than the lattice spacing. Second,
there are quantum and zero point fluctuations in the field of the polarization
quanta. Classical mechanics is expected to become valid in the limit of in-
finitely great interactions, but it is possible that the two types of quantum ef-
fects become unimportant at different values of the coupling constant. Thus,
one can imagine a semiclassical treatment in which one system is treated
classically, the other quantummechanically. The treatments of Pekar30) and
of Landau and Pekarb) are of this type.

Pekar describes the electron by a wave function \II (:) which produces

a dielectric displacement

D(7) =f| v (?)l"' H; dar' (17)

The displacement polarizes the lattice, and, in a continuum theory,

> >
r

PO =(Z-0)mT - (18)

29) H.Frohlich and H.Pelzer, British Elect. and Allied Ind. Res. Assoc.,
Tech. Rep. LIT, 184 (1948).

30) S.FPekar, J. Physics USSR 10, 341 (1946).
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The interaction energy of electron and polarization is
> -
v-- [B.Dat , (19)

and the electron wave function satisfies the self-consistent Schriédinger

equation
2 g .
S Vs vy = EY . (20)
Cc

Pekar finds

T
V(P >0.23 8372( 1 + ar + 0.45 ar?) e 2"
a=066mez(l—.l. &
w \n? ‘)
4
m e 2
' c 1 iy, 2
E~—0.164 _;2-(?—-‘) = -0.33 a“hw . (21)
‘ y

and shows that this represents thc optical activation energy. The thermal
““dissociation energy' is cqual to rhe total ¢nergy depression and is shown

to be

.
E, ~-0.11 a“tw , (22)

Actually, there are two corrections which should be made. First the
continuum states are also depresscd. Second, even in absence of inter-
action, the continuum lies hw above the ground level so that one should add
hw to the energy depression to obtain Eth' Pekar's expression becomes
valid when the energy depression is large compared to 2 quantum, i.e., when
0.1 az >> 1 or a>> 3., For weaker coupling, zero point motions and quantum
fluctuations are important.

In a later papcr7) Pekar derived this expression on the basis of a

completely quantummechanical argument. Starting from the Hamiltonian

o=

—t — i S T TR ., ~



e g

e

e e

B o T

T LEE = R

=g =

Eq.(8) in the standing wave representation, he assumed a trial function of the

product form

Q. .eq) = YO T dylay) (23)

Mo
4 = P J§°

The forms of the functions 4’(;) and Cbh(qk) are chosen so as to minimize

where

the energy. Cbk satisfies a Euler-Lagrange equation and is found to be

¢‘_‘ = A, exp [-—- 21- (q‘-t - ql_to)a] . (24)

where Ak is a normalization constant and D = Dk J—? with Dls =

2 f < Jcos (i T - L. . . .
J; D(r) {s’m (K . ;)) dr . This is the equation of a harmonic oscillator

with its equilibrium position displaced by an amount depernding on the electronic
wave function \/ (r). Pekar showed that V(F) is the same function used in the
semiclassical treatment and that the total energy (neglecting zero point cnergy)
is again —-0.11 azhu. The importance of this calculation lies in the demonstra-
tion that for large a the energy depression varies much more rapidly than
linearly with a. The treatment is based on the variaticnal method sc that the
true energy must be even lower.

To find the effective mass of a moving polaron in a semiclassical ap-
proximation, Landau and Pckax’b) studied a especial, purely 'forced' motion.
They assumed = V(F - {'t). D = B(; - Vt), p = p(r — ¥t), and developed
the expectation value of the energy in powers of the velocity. One obtains
m#* = 27(0/6)4 m_. An attemp: by Pekar7) to put this treatment on a quantum-

mechanical footing is not convincing but the more recent work of BogoliubOVH)
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and 'I‘yablikovl 8) gives the same value as the first step in a systematic adi-
abatic approximation procedure. The validity of the semiclassical procedure
might be checlged by examining the higher terms in the adiabatic procedure,
but this has not been done. However, there does not appear to be reason for
doubting the validity at very large a where quantum fluctuations are un-
important.

Let us now briefly look at the problem from the purely quantum-
mechanical point of view and in the approximation of weak interaction. The
energy levels in absence of interaction are given by

X - > nkhi)z
E(a = 0) = I N G V) W (25)

2m k =

and is a function of the quantum numbers X and Nk' For a one-dimensional

case we may plot E vs. X’“) and find schematically Fig.1l. The point of in-

tersection of the discrete state with the continuum is

2m w
x:\/ <
——

or the critical distance of F.P. Z.

Upon introducing the interaction the ground curve is depressed. The
portion of the curve belonging ¢» Jarger values of \ is closer to the higher
state curves and is therefore depressed more than the portion near \ = 0.
One thus obtains a changed curvature and effective mass. For very weak
interactions it is possible to apply second order perturbation theory and

onie obtains for the energy levels (dropping the zero-point oscillator en-

ergies)
s (ahw) “’“"c““")l'/“Z -1
E c2cme— - (ah) ————m sin __—-I/Z .
2m_ A (chhu)

31) Cf.E.P.Gross, Fhys. Rev. 84, 818 (1951).
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For small \
2 2
A\ 1 N
c c
sy that the effective mass is m®= mc/(l - a/6)

For a one-dimensional model to be studied in detail later, second order per-

turbation theory gives

- X _(s2nn ‘ T
Im ” (1 - XZ/Zm )172
?
m*= mc/(l - pzn/z . (27)
J
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These formulas break down for strong interactions and it is necessary to in-

clude the effects of higher quanta. This is done in the next section.

3. Schrddinger Equation in Fock Representation

In accordance with the discussion d Section 2 we shall take as the

Hamiltonian for an electron interacting with the polar optical modes

2
2 - Y . Y
1. :5:+ Egl_‘(xh sink-q + nEcosk-q)+% E(Muzx +—ﬁ) (11)

Ix N

In the quantum theory it is possible to use the approach of F.P.Z. which
regards W as operating on a wave function of the form V(q. Xk) and to re-
place p and 1/ by the operators —ih 9/3q and —ih 3/3Xk. In this report we
shall adopt an alternative approach due to Focklo) whic—h takes advantage of
the fact that the polarization quanta form a Bose-Einstein system with sym-
metric wave functions. Fock has shown that a Hamiltonian of the above type
can be regarded as operating on a wave functional which has as components
functions giving probabilities of various states in which a given number of

quanta are present. Tl'hus the wave functional

P X - > - > >
b= (X (@, X/(ka) X,k ky q) ... ) (28)

has the following interpretation: | Xo(a)la 43 is the probability that an

- . ; » >»
electron is found at q in a region dq and no quanta are present; ,Xl(kl'
a)l2 dl:lda is the probability that there is one quantum of wave vcctor il
in a range dl:l and an electron at q in a range dq, etc. The sum of the ab-
solute squares of the components when integrated over the configuration
ranges is normalized to unity.

With this representation one writes the Schrodinger equation

. - o= o 5 <. s . . g & . : s -
(M —E) P=0as an 1niinite chain of integrai cquaiivns. it is {iv st Conveni-
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ent to introduce the co-ordinates Ck' C: defined by

Y <
Ck = %ﬁ(xg Ak X (G, - C))i Mz_:ﬁ;
> S (29)
Y
ct- @(Xt—iﬁ%)i , Y, = (C, + CY) l/mrhu )

We note that Cls and C: are not canonical conjugates but, instead, satisfy

. a2]_ . & . _
the commutation rules [Cg. CL‘]- 61515," In addition, Ck 1s the complex con

jugate of Ck since X, and l/k are real. In terms of these co-ordinates we

k

may rewrite the Hamiltonian as

2 1/2 ,4.0 .
MR 2?&; gh(CBelk ‘hcé'e Lk q)+ E““kcls.cls
' (30)
i T
k 2

The zero of energy may be chosen so that the contribution of the zero point

oscillations drops out and one obtains, following Fock and Tomonaga,

, . /2 -ik, -q
E_ /Z . h 1 - >
{E-#%/2m} x @ : stk) (o) ¢ X (E). 3
=1
2 . o vz %
{z—z%—m} X (& =gk Nzms) ¢ 1Y x (@
o
VZ > o+ » » -ii: ;
2 () s B RDaE)e 2 (31)
k, 2
, . ik, -a
{g - zm.,} x,(kl k, q) = ;rl-/rz(zﬁ@)‘ﬁ{g(kz)e 2 Xl(kl‘ﬂ
. ik -q
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This is the coupled set of equations cut off so as to include terms with

two quanta or less. In this set p is understood to be the differential oper-

ator —i h 2 . Let us introduce

dq
-1 k - q
1 > -
€1(qu) e Xl(qu) (32)
e o . cilky vk, q) .
LE R T xR R0
If one then assumes
X(@= ye*a |
o o ;
. e p o= iX.q 33

’

Lotk k) = G0k Ky)etr e
Eq.(31) becomes
2.2 /2
R h .
(E-T—m )Xo > g“-‘l)(zm.j C k)
k
|

2
- g

{g i, m_;% X+ k,)z} g (k) = g(i,>(z{;‘;;)vz X, * Zw(zx"z:..)w

(34)
z (k) £,k &,

{E - Z‘hu—-;r—i- (X + 1:1 + KZ)Z} QZ(EI l:Z) = 2—1172-(2-%;),/2 {8(:2) Cl“:l)
v g(k)) C,(iz)}

Let us first examine these equations when the an.plitudes of the two

quantum terms are set equal to zero. One obtains froin Zq.(34b)
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/2
2 4 2
CsR(aes) X
L (k) - — : (35)
E —hw—%({ + ;)Z

Inserting this into Eq.(34a) we find the expression for the determination of

the energy of the lowest states

n
2s (D
e il g(kl)(ZMu) (36)
" Zm 2 )
E—hu-z";(i»,l’x)z

k

This is exactly the expression obtained by F.P. Z.
To find the wave functiocns and energy levels in the two quantum ap-
proximation, one inserts C(Il ;Z) from Eq.(34c) into Eq.(34b). We thus

é
find the pair of integral equations

2.2 /2 -
(2-22) y - 3 (i) CE
k
hz - - 2 h 2(2) hd
- E-znu-.z”r_n(g.»«g:fx)z 1
(x) § (%)
. on VW2 VAR ) 8 1
50 (mn)  x + e mg) . .
o E-2ho-5— (X+k+x)

%

The method which has been adopted to solve Eqs.(37) is to treat Eq.(37b)

as an inhomogeneous integral equation and to solve for Q (:) by interation,
i.e., by finding the Liouville-Neumann series. The expression for C (i) is
then inserted in the right-hand side of Eq.(37a) giving an implicit explression

for E(\). For an integral equation of type



s Fh=

#(x) = h(x) + f K(x, y) #(y) dy (38)

with sufficiently regular kernel K(x, ;) the condition3z) for convergence of

the Liouville-Neumann series is

JSikE n2 axay 1 (39)

For Eq.(37b) we may find the condition of convergence by introducing

* 2 - - 2> »>
w(k) = E—hu—zh—n-‘-(kdvkyz—-z-a;z ;LZE‘) L LR (o)
4 E-2hu—s— (X +k+%)

Then

b 4

K(kl,x) = (41)

g(k) g(x) n/2Mw

2 > e 2 2.,e
TR Y X+ k n (%)
E - 2hw — (x+k+x)}{£-m-§-z-—)__ Z 8 S
{ Zm m Mo | E_ame-n’R e k4 %)’
P. 4 m

4. Effective Mass for One-Dimensional Problem

In order to discuss the effects of two and three quantum contributions
and to estimate the effective masses for the strong interactions occurring
in ionic crystals, it is convenient first to discuss a certain one-dimensional
case where the integrals occurring are easier to evaluate than for three-di-
mensional. One can show that the one-dimensional integrals are certain
averages over the integrands of threc-dimensional integrals and differ from
the latter by factors of the order of unity. We shall compare the F.P.Z.
solution with the more complete solution for different strengths of interaction.

At weak inte . actions (bzw < 1) we find that the two quantum terms give a small

32) W.Schmeidler, "Integralgleichungen,' Akademische Verlag, Leipzig,
1950, n.270.
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correction in energy to the F.P.Z. solution and that inclusion of three quan-
tum terms gives an additional negligible correction. For stronger inter-
actions (ﬁzﬂ‘zZ) the two-quantum solution yields appreciable corrections to
the energy and effective mass, and the three-quantum terms give small cor-
rections. For pzw > 3 it would be necessary to include more quanta in order
to obtain adequate results. It appears, though, that the expression

Eo = - Bzwhu suggested by intermediate coupling theory is a good approxi-
mation for the range of interactions pzu < 3, while the effective mass

m® = mc(l + ﬂZR/Z) is less than the true value.

We shall study the problem where g(k) = '_%! = constant in which L is
L

the length of the quantization box. For the one-dimensional problem

k

If one introduces dimensionless units by measuring energy in terms of hw
and momentum in units of (thu)l‘/z. the measure of coupling strength be-

comes pzw where

o b ) (79" w

In addition, the quantity

2

-

B = s E ) , (+3)
- E—Zhw—-z-r—.n-(X§k*X)

Zw
has the dimensions of energy, and in dimensionless units B = &— .

V2-E

The Fock equations including three-quantum terms become

(e} x -0 770
- =P J S (k) dk
o

co 1
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L

' +e0
{E—l—(nk)z} § k) =pX,+ VZp f § (kjk)) dk,

2 ) ] L
{E— 2= Atk +k)) } Cz(klkz) = —% {Ql(kl) $ Cl(kz)}

+ 00 '
+ V38 f C(klkzks)dk3 |
et 3 (44) |

{E— TNtk tk, 4 kS)Z] C3(klkzk3) - _% {Cz(klkz)

+ ;l (k ky) + c'(kskl)}

2
' l/Z '
. . L L
We have introduced the amplitudes ; = —z ; , c = C , etc.
1 (2n) 1 2 2w 2

Let us now discuss these equations according to the number of quanta. The

one -quantum solution is

> . (45)

In Fig.2 we plot E(\ = 0) = E as a function of bzﬂ. To find the mean velocity
aE!

Vv we must compute —

o\

v 2\

Y Bn/2(1 - E)¥¢ (46)

t It can be shown by methods similar to those in Ref. 30 that ¥ = dE/d\

and m* = l/dZE/dxz. Compare, however, the elegant proof of
17)

Bogoliubov
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To find the effective mass for small values of the total momentum we set

E = Eo + (Xz/m') and expand to order \z. Then

2
me =14+ B /2 : (47)

2
This is plotted as a function of 521: in Fig.3; m*—» | + 9-21 as pzw -» 0 and
m®* = 1.50 as Bzw—boo.

To find the two-quantum solution one must solve the pair of integral

equations

{e- iz} X = [:oﬁ'(k) di | Gi8)

4 +00 i ,
{E—l—(\+k)2+8} C(k)sz ,52 / C(k)dk _ .
) o E—2-(\+k +k)C

The Liouville-Neumann series is, with B = ﬁzn/ﬁ — E and the abbreviations

=1-E-B ,C:=y2-E

-B X, dk'
C:a +(x+k) { f{ +(x¢k)}{cz+(x+k+k')2}

+e0 dk'
i ﬂ“ [ao {az + (N + k')z} {CZ + (N + k+ k')z} W
/"’ dk'' .
-00 {az + (N + k) } {CZ +(N+k+ k')z}
With the help of the integral
e dk i "(é + tl:')
fn (a[«rk )(C +(k+k") ) kT+(a<|»c:)Z - 50)

we obtain
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- ~BX, 2 (%*tl:) 2. (1. 1\,2
C'(nk)zuz{“p"k%(ucfz*p“(:*ap
(51)
f"' dk' f.o
-ao{(x+k+k')7+cz}{(l#k)2+az}{k'z+(a+c)2} }
2 A5+ )= s)
\_E - L*(b n? \z+(ca:za)a + (p° )3(— )z(—i—-cy
1 +f(za*c)(%c*é) (5%)

(a+c)° [\ +(2a+c)®] [\°+(2a+C))° e )

In order to evaluate the next term one must compute the three-denominator
integral. This is easy to do but will not be written here. For the one-

dimensional problem the kernel is

1 1
K(x§) - . (53)
1 2 ¥
{(\+x+€)Z+C} {(\,ff)z*az}
- . 3.3 : ;
and the convergence condition is p »~ € 4 C'a”. Proceeding as in the one-

quantum case, we find for the effective mass

.. B ‘ 1 1 &_
b g ol 9]

o o

2
r — B z{g?;(ui;) z-%} .....

2a C(2a_ +C)) C o o
o o0 "o o

(54)

The results of the calculations for the two-quantum case are plotted in Figs.
2and 3. It is seen that the two-quantum correction to the energy becomes

’ 2 ; ; : T
appreciable for § w > 1, while the correction to the effective mass is im-

portant for pzw > 0.3. For the higher values of Bzw it is necessary to in-

—— e
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clude several higher terms in the series (Eq.52). For example, for pzu =2
the energy is Eo = - 1.82 and is divided as — (1.51 + 0.25 + 0.05 + 0.01). Even
for small values of p?‘n it is important to include higher terms for large values
of \. It is interesting to note from Eq.(48b) that the onset of the continuum is
depressed to an energy determined by | — E~ B = 0. This is illustrated in Fig.
4 where we plot the energy vs. momentum for bzw = 1. For higher \ the cffec-
tive mass appears to be large. It is not clear how higher quanta will modify

this effect.

In order to estimate the energy when the wave function includes three

quantum contributions it is necessary to eliminate C and to obtain an in-
3
tegral equation for _t, . One finds
2

E-2-(N+k +k)Z+A C(kk)= g C(k)+ C(k)+pz
1 2 2 172 ﬁ 1 1 | 2

J[ L (kyky) + & (ik))
2 2 dk
E-3I-(\+k

. 55
+ kz + ks)z 3 (55)

1

Ben

where A =
13 - E

In addition, we have the first two equations of set (44). We can no longer
find a single integral equation which can be solved by iteration and whose
convergence can be demonstrated. The procedure will be less systematic.

'
We first drop the integral terms above and find for C “‘1"2)
2

{ Ckk*)* Ckkz)}

'= 8 56
C?_ ﬁ{E—Z—(x+kl+kz)2+A} (36)

This expression differs from the previous one only by the presence of the
constant A. The wave functions and energy levels can therefore be found

from Eqs.(51) and (52) by replacing a and C by

a'=f1—E-D ., c'=y2-E-A , (57)
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where

D- —B"™
JZ—E—A

|}
The next correction may be found by inserting the c (klkl) feund, inte

the integral in EqQ.(55). We find

2 /+.. gz(“zks) + %“‘3“1)
2

6 Cz(klkz) - P (58)

dk, .
x(kl+k2)2+c' o 3-E+(k +k c 3

Z+k3+x)

Since C (k kz) can be expressed explicitly in terms of klk and X this
o

integral can be evaluated. Then inserting 6 C into Eqs. (44a) and (44b),

we find a correction to the energy of

4 + 00 dkl + e dkz 4 00
Vze f 2 / I kg
-0 E—1-(\+k)) -0 (A+k, +k)°+C i

1 2

gz(kzks) % cl(k3k

~ dk; , (59)
3—E+(L+kl+kz+k3)

where

. ( L+ 8 (xy))
2

V2 2-E+(\ +k +kz)7-

and C may be obtained from Eq.(51). Higher order corrections are ob-
tained by iteration. From Figs. 2 and 3 we see that three-quantum effects
influence the energy and effective mass to an important extent for pzw > 3.
The effective mass is particularly sensitive to the nunuber of quanta included
and for ﬂzw > 3 it is possible that the method of including a limited number of

he calculatione of Fig. 3 esem to point to a breakdown
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of the linear dependence of m* on pzn for pzn > 3.

S. Three-Dimensional Case

Let us now examine the actual three-dimensional case. We introduce
dimensionless units by measuring energy in units of hw and momentum in

units of y2mhw so that the relation E = .\Z/Zm for a free particle goes over

to E = Xz. We make use of the fact that 2 - -Lg j kzdk dfl. Then
k  (2w)
with

2 /2
(Gr- 1) (35)

n

the equation for the energy, including two quantum terms, becomes

(e [ pratsey o Y

(60)
]
dk'd £
) Z ' z * o o o o »
(()_\+l_n+l_<) +2-—E}{(5+l_<) +l—E—B}
where
a . -1 IN + ki
B (k. %) = sin ( . (61)
13+ K] 72+(5+x_<)3-r:)
Neglecting the two-quantum contributions one finds the one-quantum ex-
pression
A —E=§ sin”! A (62)

ﬁl+xz-E

The lowest energy level is obtained for A = 0 when - Eo = n/'l - Eo . This
is the same expression that we had in the one-dimensional case provided we
identify the Bzw used there with the a used here. One can vt “in the effective

mass by writing E = Eo + xz/m” and developing in powers of A\. Wwe fin-!



=3 7=

m.:(“%ﬁm)/(“%m) . (63)
[o} [

The energy Eo is plotted as a function of a in Fig.3. In the limit of vanishing

L

a one finds m* =+ 1 + a/6 so that the correction is /3 that for the one-

dimensional case. For very large a, Eo-’ ow and m®* - .13,

Let us now turn our attention to the two-quantum contributions. The
results of the one-dimensional case indicate that for actual crystals a two-
quantum solution will not be adequate. Since the calculations are involved,
we shall restrict ourselves to a discussion of the energy for A = 0 as a
function of interaction strength. The results for the energy are similar to
those for the one-dimensional case. For the effective mass we would expect
approximate agreement with the law m®* - mc(l + a/6).

We notice that, because of the presence of the term B(i) in the de-
nominators, one does not have straightforward integrals. Consider the de-
nominator k2 +1—~E—-B with B =a/k sin.l k/V2+ kz —E. For k =0,

B = a/f2 - E, while for large k, B~ 0. It can be shown that assuming

B = const. = a/f2 — E introduces errors of the order 1 percent in the energy.

In addition. a better constant value for B may be determined after one has ap-
proximate values for E. Thus the first term in the Liouville-Neumann series
gives

2

A —E=%sin.l A

(64)
Visr2_E—_B

In order to compute the second term in the series, one must evaluate

an integral of type

Q 'a S
! :f// {(,_:;kzi 32] f-//{(g N ,_‘v?dt :Z} &-)z N J}' (65)
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where we have put az =1 -E-B, bz = 2—E. We write ]l in the form

dk_dk'
IM[// (k + a%) { (k - k)tb;}(k'z+a)k27 '

and consider first

1=fff NEI i fe(k" o(k — k') ak’,

a®) ((k'- k)% + b%)

: e(k—K') = :
LR ;o dlk—k) = LN

(k' +a%) (k -

We now make use of the theorem
J© B ®B1 P Rap - foli) ek -k ek,

where

is the Fourier transform of 9(k') and(b(;)) = yn/2 e-bp/p is the Fourier

transform of ¢(k'). We have

.2 -Pb
» - -k 1. p -
s-fl] b P EGHTr a-P
a
Introducing the angle cos 6 between k andﬁ , integrating over 6, and

inserting in the expression for I, one finds

3
[ = 87 b(1—e P? “Pay,
a:! ‘[o k +a / dpep = sin kp !

Pk
and finally,
gn° [ dx -1k -1k
1= —y —7——2——(1311 S tan P ) . (bb)
a (k™ +a)k

An expression for I can be obtained in the form of a series by writing
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tan'lx=x—§x3+éx5............ xz<l
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Thus, to the second term, we find (for A\ = 0) -E = a/m + I(a, b).
The contributions of higher terms in the Liouville-Neumann series become
progressively more difficult to evaiuate. However, each term gives a
positive contribution to the right-hand side of Eq.(60). Furthermore, one
can over -estimate the contribution of each term by replacing the coupling

2 2

denominator (l.( + i')z +b by b . Then each term is less than

a 1
(2 - E) JI-E—B

times the previous one, and if one uses the overestimate, one obtains values

of E which are too low. On the other hand, neglecting higher terms entirely
gives values of E which are too high.
The results of the calculations of E vs. a are presented in Fig.5.

The behavior is very similar to that in one dimeasion.
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